Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"

"पुराने को छोड़ नये के तरफ"
Jawaharlal Nehru
"Step Out From the Old to the New"

Indian Standard

DETERMINATION OF WATER SOLUBLE AND ACID SOLUBLE CHLORIDES IN MORTAR AND CONCRETE — METHOD OF TEST

PART 2 HARDENED MORTAR AND CONCRETE

ICS 91.100.10;100.30

© BIS 2001

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

August 2001

Price Group 3
AMENDMENT NO. 1 AUGUST 2007
TO
IS 14959 (PART 2) : 2001 DETERMINATION OF WATER
SOLUBLE AND ACID SOLUBLE CHLORIDES IN
MORTAR AND CONCRETE — METHOD OF TEST

PART 2 HARDENED MORTAR AND CONCRETE

(Page 1, clause 4.1.6, line 1) — Insert ‘dried at 160°C and cooled in a
desiccator’ after ‘silver nitrate’.

(Page 2, clause 4.1.6, last line) — Add at the end ‘and record the exact
normality of the silver nitrate solution’.

(Page 2, clause 4.1.7, first line) — Substitute ‘1.52 g’ for ‘1.7 g’.

(Page 2, clause 4.1.7, last line) — Add at the end ‘or record the exact
normality’.

(Page 2, clause 4.1.7) — Add the following note at the end:

‘NOTE — Sometimes it is difficult to make exactly 0.02 N solution if the standard normality
of the solution is less’.

(Page 2, clause 4.3.1.2, line 3) — Insert ‘or more’ after ‘25 ml’ and
substitute ‘0.02 N’ for ‘0.2 N’.

(Page 2, clause 4.3.2.2, line 2) — Delete ‘Add 5 ml of 6 N nitric acid.’

(Page 2, clause 4.3.2.2, line 3) — Substitute ‘or more of 0.02 N’ for ‘of
0.2N’.

(Page 2, clause 4.4, lines 3 to 7) — Substitute the following for the existing
formula:

\[
\text{Chloride, percent} = \frac{2 \times 0.709 (X-Y)}{m}
\]

where

\(X = \text{volume of 0.02 N silver nitrate added, in ml;}
\)

\(Y = \text{volume of 0.02 N ammonium thiocyanate consumed; and}
\)

\(m = \text{mass of concrete sample taken for test, in g.}
\)

(CED 2)

Reprography Unit. BIS. New Delhi, India
FOREWORD

This Indian Standard (Part 2) was adopted by the Bureau of Indian Standards, after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council.

Chlorides in the concrete could be drawn from different sources like aggregates, mix water, admixtures and cement and could lead to durability problems namely, corrosion of reinforcing steel in concrete, if present in sufficient quantity. Chlorides could be present in different degrees of binding in the concrete matrix and could be determined as water soluble and acid soluble chlorides. In some cases of corrosion of carbonated concrete, the combined chlorides (water soluble and as acid soluble) will be let free in pore water and these chlorides are harmful to concrete. To minimize the chances of deterioration of concrete due to harmful chlorides, the level of these chlorides has been limited in various design codes. Therefore, this standard has been formulated to provide necessary guidance for determination of water soluble and acid soluble chlorides in concrete. This Part 2 of the standard covers volumetric method of test for determination of chlorides in hardened mortar and concrete and Part 1 of this standard covers the method of test for fresh mortar and concrete.

The composition of the committee responsible for the formulation of this standard is given in Annex A.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'.

Indian Standard

DETERMINATION OF WATER SOLUBLE AND ACID SOLUBLE CHLORIDES IN MORTAR AND CONCRETE — METHOD OF TEST

PART 2 HARDENED MORTAR AND CONCRETE

1 SCOPE

This standard (Part 2) covers volumetric method of test for determination of water soluble and acid soluble chlorides in hardened mortar and concrete.

NOTE — The source of samples for test in accordance with this standard may be either the stationary samples obtained from project sites or ready-mixed concrete plants.

2 REFERENCES

The Indian Standards listed below contain provisions which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below:

IS No. Title
1070:1992 Reagent grade water — Specification (third revision)
3025 Methods of sampling and test (Part 32):1988 (physical and chemical) for water and wastewater : Part 32 Chloride (first revision)

3 SAMPLING

The apparatus required for processing the sample shall be chosen for its suitability for the purposes of the investigation. A specimen to be tested for the determination of chlorides both acid and water soluble, shall not be removed from the structure until the concrete has become hard enough to permit removal without disturbing the bond between the mortar and the coarse aggregate. Normally concrete shall be 14 days old before the specimens are removed. Specimens that show abnormal defects or that have been damaged in removal shall not be used.

A core drill shall be used for securing cylindrical core specimens (at least 100 mm diameter). The diameter of the core should be at least 2.5 times the maximum size of the aggregates and the length of the core should be at least 95 percent of core diameter. For specimens taken perpendicular to the horizontal surface, a short drill is satisfactory. For inclined holes, a diamond drill is satisfactory. A saw having diamond or silicon carbide cutting edge shall be used for securing beam specimens from the structures or pavement.

Samples more than 25 mm in maximum dimension shall be reduced in size by use of jaw crusher or broken into smaller pieces by hammering carefully to avoid loss of smaller pieces. Crush the particles to less than 25 mm in maximum dimensions using a rotating puck grinding apparatus or by using a disk pulverizer, operated to restrict to negligible levels the loss of fine particles. Sieve the crushed samples through 850μm IS Sieve. Thoroughly blend the material by transferring it from one glazed paper to another at least 10 times.

4 METHOD OF TEST

4.1 Reagents

4.1.1 Quality of Reagent

Unless otherwise specified, pure chemicals of analytical reagent grade and distilled water (see IS 1070) shall be used in the test.

4.1.2 Nitric Acid (HNO₃) Concentrated (Specific Gravity 1.42)

Prepare the solution, 6N (approximately), by diluting 38 ml of concentrated nitric acid to 100 ml with distilled water.

4.1.3 Ferric Alum [FeNH₄(SO₄)₂·12H₂O]

Dissolve 10 g of ferric alum in 100 ml of distilled water and add 1 ml of nitric acid.

4.1.4 Potassium Chromate (K₂CrO₄), 5 Percent Solution

Dissolve 5 g of potassium chromate in 100 ml of distilled water.

4.1.5 Nitrobenzene (NO₂)

4.1.6 Silver Nitrate (AgNO₃) Solution, 0.02 N

Weigh 1.7 g of silver nitrate, dissolve in distilled water and dilute to 500 ml in a volumetric flask. Standardize the silver nitrate solution against 0.02 N sodium chloride solution using potassium chromate solution as indicator.
IS 14959 (Part 2) : 2001

(5 percent w/v) in accordance with the procedure given in IS 3025 (Part 3).

4.1.7 Ammonium Thiocyanate (NH₄ SCN) Solution, 0.02 N

Weigh 1.7 g of ammonium thiocyanate and dissolve in one litre of distilled water in a volumetric flask. Shake well and standardize by titrating with 0.02 N silver nitrate solution using ferric alum solution as an indicator. Adjust the normality exactly to 0.02 N.

4.1.8 Sodium Chloride (NaCl), 0.02 N

Weigh 1.1692 g of sodium chloride dried at 105 ± 2°C, dissolve in distilled water and make up to 1 000 ml in a volumetric flask.

4.2 Use of Filter Paper

In the methods prescribed in this standard, relative numbers of Whatman filter paper only have been prescribed since these are commonly used. However, any other suitable brand of filter papers with equivalent porosity may be used.

4.3 Procedure

4.3.1 Water Soluble Chloride

4.3.1.1 Weigh 1 000 ± 5 g of the pulverized mortar or concrete sample in a 2 litre capacity beaker and add 1 000 ml of distilled water (chloride free). Stir the mixture vigorously and warm gently for 15 minutes. After allowing the mixture to stand for 24 h for settling, decant about 200 ml of the supernatant solution into a clean dry 250 ml capacity beaker. Immediately, filter the solution through Whatman filter paper No. 1 and collect the filtrate.

4.3.1.2 Pipette 50 ml of filtrate in a 250 ml capacity conical flask. Add 5 ml of 6 N nitric acid. Add a known volume (X), preferably 25 ml of 0.2 N silver nitrate solution. Add 1 ml ferric alum and 5 ml of nitrobenzene. Shake vigorously to coagulate the precipitate. Titrate the excess silver nitrate with 0.02 N ammonium thiocyanate solution until a permanent faint reddish brown color appears. Note down the volume (Y) of ammonium thiocyanate used.

4.3.2 Acid Soluble Chloride

4.3.2.1 Weigh about 1 000 ± 5 g of the pulverized mortar or concrete sample in a 2 litre capacity beaker and add 100 ml of 6 N nitric acid and 900 ml of distilled water (chloride free), after stirring for few minutes. Stir the mixture vigorously and warm gently for 30 min. After allowing the mixture to stand for 10 to 15 min for settling, decant about 200 ml of the supernatant solution into a clean dry 250 ml capacity beaker. Immediately, filter the solution through Whatman filter paper No. 1 and collect the filtrate.

4.3.2.2 Pipette 50 ml of filtrate in a 250 ml capacity conical flask. Add 5 ml of 6 N nitric acid. Add a known volume (X), preferably 25 ml of 0.2 N silver nitrate solution. Add 1 ml ferric alum and 5 ml of nitrobenzene. Shake vigorously to coagulate the precipitate. Titrate the excess silver nitrate with 0.02 N ammonium thiocyanate solution until a permanent faint reddish brown color appears. Note down the volume (Y) of ammonium thiocyanate used.

4.4 Calculation

Calculate the percentage of chloride (acid soluble/water soluble) by mass of mortar or concrete as follows:

Chloride, percent = 0.00142 (X - Y)

where

X = volume of silver nitrate added, in ml; and

Y = volume of 0.02 N ammonium thiocyanate consumed.

NOTE – Interference of silver chloride particles (which are generated in-situ) in titration by reacting with thiocyanate can be avoided by the addition of nitrobenzene which forms a film on silver chloride particles.
ANNEX A

(Foreword)

COMMITTEE COMPOSITION

Cement and Concrete Sectional Committee, CED 2

Chairman

Padmashri Dr. H. C. Visvesvaraya
"Chandrika", at 15th Cross, 63-64 East Park Road, Malleswaram, Bangalore 560003

Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr S. C. Ahluwalia</td>
<td>OCL India Ltd, New Delhi</td>
</tr>
<tr>
<td>Dr S. S. Amuta</td>
<td>Geological Survey of India, Kolkata</td>
</tr>
<tr>
<td>Shri V. Balasubramaninan</td>
<td>Directorate General of Supplies and Disposals, New Delhi</td>
</tr>
<tr>
<td>Shri R. P. Singh (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Shri G. R. Bharatkar</td>
<td>B.G. Shirke Construction Technology Ltd, Pune</td>
</tr>
<tr>
<td>Shri C. C. Bhattacharyya</td>
<td>Ministry of Surface Transport, Department of Surface Transport (Roads Wing), New Delhi</td>
</tr>
<tr>
<td>Shri I. K. Paney (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Shri A. K. Chadha</td>
<td>Hindustan Prefab Ltd, New Delhi</td>
</tr>
<tr>
<td>Shri J. R. Shu (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Chief Engineer (Design)</td>
<td>Central Public Works Department, New Delhi</td>
</tr>
<tr>
<td>Superintending Engineer (S & S) (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Chief Engineer (Navgam Dam)</td>
<td>Saradar Sarovar Narmada Nigam Ltd, Gandhinagar</td>
</tr>
<tr>
<td>Superintending Engineer (QCC) (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Chief Engineer (Research-Cum-Director) Research Officer (Concrete Technology) (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Shri J. P. Desai</td>
<td>Gujarat Ambuja Cements Ltd, Ahmedabad</td>
</tr>
<tr>
<td>Shri B. K. Jagtia (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>Structural Engineering Research Centre (CSIR), Ghaziabad</td>
</tr>
<tr>
<td>Director</td>
<td>A.P. Engineering Research Laboratories, Hyderabad</td>
</tr>
<tr>
<td>Joint Director (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>Central Soil and Materials Research Station, New Delhi</td>
</tr>
<tr>
<td>Shri P. L. Kashyap (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Director (CMDD) (N & W)</td>
<td>Central Water Commission, New Delhi</td>
</tr>
<tr>
<td>Deputy Director (CMDD) (NW&S) (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Shri K. H. Gangwai</td>
<td>Hyderabad Industries Ltd, Hyderabad</td>
</tr>
<tr>
<td>Shri V. Pattahi (Alternate)</td>
<td></td>
</tr>
<tr>
<td>General Manager</td>
<td>Gannon Dunkerley and Company Ltd, Mumbai</td>
</tr>
<tr>
<td>Senior Manager (Engineering) (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Dr Ashok Kumar Ghosh</td>
<td>Indian Institute of Technology, Kharagpur</td>
</tr>
<tr>
<td>Shri S. Gopinath</td>
<td>The India Cements Ltd, Chennai</td>
</tr>
<tr>
<td>Shri R. Arunchalam (Alternate)</td>
<td></td>
</tr>
<tr>
<td>Shri C. Jayaraman</td>
<td>Grasim Industries Ltd, Mumbai</td>
</tr>
<tr>
<td>Shri A. K. Jain (Alternate)</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on page 4)
Representing

- Cement Corporation of India Ltd, New Delhi
- Research, Designs and Standards Organization (Ministry of Railways), Lucknow
- National Test House, Kolkata
- Central Board of Irrigation and Power, New Delhi
- The Indian Hume Pipe Company Ltd, Mumbai
- Structural Engineering Research Centre (CSIR), Chennai
- National Council for Cement and Building Materials, Ballabgarh
- Gammon India Ltd, Mumbai
- Hospital Services Consultancy Corporation (India) Ltd, New Delhi
- Builder's Association of India, Mumbai
- Central Road Research Institute (CSIR), New Delhi
- Indian Roads Congress, New Delhi
- Engineer-in-Chief's Branch, Army Headquarters, New Delhi
- Public Works Department, Government of Tamil Nadu, Chennai
- Larsen and Tobro Ltd, Mumbai
- Housing and Urban Development Corporation Ltd, New Delhi
- The Associated Cement Companies Ltd, Mumbai
- Central Building Research Institute (CSIR), Roorkee
- Fly Ash Mission, Department of Science and Technology, New Delhi
- The Institution of Engineers (India), Kolkata
- Indian Concrete Institute, Chennai
- Director General, BIS (Ex-officio Member)
Concrete Subcommittee, CED 2:2

Representing
Saurashtra Cements Ltd, Ahmedabad
Stup Consultants Ltd, Mumbai
Ministry of Surface Transport (Roads Wing), New Delhi
Indian Institute of Technology, New Delhi
Public Works Department, Government of Maharashtra, Mumbai
Tor Steel Research Foundation in India, Kolkata
Indian Ready-Mixed Concrete Association, Bangalore
Gujarat Ambuja Cements Ltd, Ahmedabad
Central Soil and Materials Research Station, New Delhi
A.P. Engineering Research Laboratories, Hyderabad
Central Water Commission, New Delhi
Gannon Dunkerley and Co Ltd, Mumbai
Indian Institute of Technology, Kharagpur
Associated Consulting Services, Mumbai
University of Roorkee, Roorkee
In personal capacity
Central Building Research Institute (CSIR), Roorkee
Research, Designs and Standards Organization (Ministry of Railways), Lucknow
National Council for Cement and Building Materials, Ballahgarh
Indian Institute of Technology, Kanpur
Structural Engineering Research Centre (CSIR), Chennai
The Hindustan Construction Co Ltd, Mumbai
Structural Engineering Research Centre (CSIR), Ghaziabad
National Building and Construction Corporation Ltd, New Delhi
Gammon India Ltd, Mumbai

(Continued on page 6)
IS 14959 (Part 2) : 2001

(Continued from page 5)

Members

SHRI SUDHODAN ROY
SHRI M. KUNDU (Alternate)

SHRI S. C. SAWHNEY
SHRI R. P. MEHROTRA (Alternate)

SHRI S. S. SEEHRA
SHRI SATANDER KUMAR (Alternate)

PROF M. S. SHETTY

SHRI S. N. SINGH
SHRI SURINDER MOHAN (Alternate)

SHRI P. SRINIVASAN
SHRI P. BANDOPADHYAY (Alternate)

SUPERINTENDING ENGINEER (DESIGNS)
EXECUTIVE ENGINEER (DESIGNS-III) (Alternate)

SHRI B. T. UNWALLA

SHRI U. S. P. VERMA

SHRI VIMAL KUMAR

Representing

Hindustan Prefab Limited, New Delhi

Engineers India Ltd, New Delhi

Central Road Research Institute, New Delhi

Indian Concrete Institute, Chennai

Engineer-in-Chief 's Branch, Army Headquarters, New Delhi

The Associated Cement Companies Ltd, Mumbai

Central Public Works Department, New Delhi

In personal capacity

Nuclear Power Corporation of India Ltd, Mumbai

Fly Ash Mission, Department of Science and Technology, New Delhi
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed, if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc: No. CED 2 (5816).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 323 01 31, 323 33 75, 323 94 02

Regional Offices:
Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
323 76 17
323 38 41

Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi
CALCUTTA 700 054
337 84 99, 337 85 61
337 86 26, 337 91 20

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600 113

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093

Branches: AHMADABAD, BANGALORE, BHOPAL, BUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM.

Printed at New India Printing Press, Khurja, India